Retinal waves are governed by collective network properties.

نویسندگان

  • D A Butts
  • M B Feller
  • C J Shatz
  • D S Rokhsar
چکیده

Propagating neural activity in the developing mammalian retina is required for the normal patterning of retinothalamic connections. This activity exhibits a complex spatiotemporal pattern of initiation, propagation, and termination. Here, we discuss the behavior of a model of the developing retina using a combination of simulation and analytic calculation. Our model produces spatially and temporally restricted waves without requiring inhibition, consistent with the early depolarizing action of neurotransmitters in the retina. We find that highly correlated, temporally regular, and spatially restricted activity occurs over a range of network parameters; this ensures that such spatiotemporal patterns can be produced robustly by immature neural networks in which synaptic transmission by individual neurons may be unreliable. Wider variation of these parameters, however, results in several different regimes of wave behavior. We also present evidence that wave properties are locally determined by a single variable, the fraction of recruitable (i.e., nonrefractory) cells within the dendritic field of a retinal neuron. From this perspective, a given local area's ability to support waves with a wide range of propagation velocities-as observed in experiment-reflects the variability in the local state of excitability of that area. This prediction is supported by whole-cell voltage-clamp recordings, which measure significant wave-to-wave variability in the amount of synaptic input a cell receives when it participates in a wave. This approach to describing the developing retina provides unique insight into how the organization of a neural circuit can lead to the generation of complex correlated activity patterns.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Early-stage waves in the retinal network emerge close to a critical state transition between local and global functional connectivity.

A novel, biophysically realistic model for early-stage, acetylcholine-mediated retinal waves is presented. In this model, neural excitability is regulated through a slow after-hyperpolarization (sAHP) operating on two different temporal scales. As a result, the simulated network exhibits competition between a desynchronizing effect of spontaneous, cell-intrinsic bursts, and the synchronizing ef...

متن کامل

Dynamic Processes Shape Spatiotemporal Properties of Retinal Waves

In the developing mammalian retina, spontaneous waves of action potentials are present in the ganglion cell layer weeks before vision. These waves are known to be generated by a synaptically connected network of amacrine cells and retinal ganglion cells, and exhibit complex spatiotemporal patterns, characterized by shifting domains of coactivation. Here, we present a novel dynamical model consi...

متن کامل

Soliton Gas in Space-charge Dominated Beams

Based on the Vlasov-Maxwell equations describing the self-consistent nonlinear beam dynamics and collective processes, the evolution of an intense sheet beam propagating through a periodic focusing field has been studied. It has been shown that in the case of a beam with uniform phase space density the Vlasov-Maxwell equations can be replaced exactly by the hydrodynamic equations with a triple ...

متن کامل

Synaptic and Extrasynaptic Factors Governing Glutamatergic Retinal Waves

In the few days prior to eye-opening in mice, the excitatory drive underlying waves switches from cholinergic to glutamatergic. Here, we describe the unique synaptic and spatiotemporal properties of waves generated by the retina's glutamatergic circuits. First, knockout mice lacking vesicular glutamate transporter type 1 do not have glutamatergic waves, but continue to exhibit cholinergic waves...

متن کامل

Finding Electrostatics modes in Metal Thin Films by using of Quantum Hydrodynamic Model

In this paper, by using a quantum hydrodynamic plasma model which incorporates the important quantum statistical pressure and electron diffraction force, we present the corrected plasmon dispersion relation for graphene which includes a k quantum term arising from the collective electron density wave interference effects (which  is integer and constant and k is wave vector). The longitudinal ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 19 9  شماره 

صفحات  -

تاریخ انتشار 1999